WIND and EARTHQUAKE RESISTANT BUILDINGS STRUCTURAL ANALYSIS AND DESIGN
John A. Martin & Associates, Inc.
Preference :
The primary objective of this book is to disseminate information on the latest concepts,
techniques, and design data to structural engineers engaged in the design of wind- and
seismic-resistant buildings. Integral to the book are recent advances in seismic design,
particularly those related to buildings in zones of low and moderate seismicity. These
stipulations, reflected in the latest provisions of American Society of Civil Engineers
(ASCE) 7-02, International Building Code (IBC)-03, and National Fire Protection Association
(NFPA) 5000, are likely to be adopted as a design standard by local code agencies.
There now exists the unprecedented possibility of a single standard becoming a basis for
earthquake-resistant design virtually in the entire United States, as well as in other nations
that base their codes on U.S. practices. By incorporating these and the latest provisions
of American Concrete Institute (ACI) 318-02, American Institute of Steel Construction
(AISC) 341-02, and Federal Emergency Management Agency (FEMA) 356 and 350 series,
this book equips designers with up-to-date information to execute safe designs, in accordance
with the latest regulations.
Chapter 1 presents methods of determining design wind loads using the provisions
of ASCE 7-02, National Building Code of Canada (NBCC) 1995, and 1997 Uniform
Building Code (UBC). Wind-tunnel procedures are discussed, including analytical methods
for determining along-wind and across-wind response.
Chapter 2 discusses the seismic design of buildings, emphasizing their behavior
under large inelastic cyclic deformations. Design provisions of ASCE 7-02 (IBC-03, NFPA
5000) and UBC-97 that call for detailing requirements to assure seismic performance
beyond the elastic range are discussed using static, dynamic, and time-history procedures.
The foregone design approach—in which the magnitude of seismic force and level of
detailing were strictly a function of the structure’s location—is compared with the most
recent provisions, in which these are not only a function of the structure’s location, but
also of its use and occupancy, and the type of soil it rests upon. This comparison will be
particularly useful for engineers practicing in many seismically low- and moderate-risk
areas of the United States, who previously did not have to deal with seismic design and
detailing, but are now obligated to do so. Also explored are the seismic design of structural
elements, nonstructural components, and equipment. The chapter concludes with a review
of structural dynamic theory.
techniques, and design data to structural engineers engaged in the design of wind- and
seismic-resistant buildings. Integral to the book are recent advances in seismic design,
particularly those related to buildings in zones of low and moderate seismicity. These
stipulations, reflected in the latest provisions of American Society of Civil Engineers
(ASCE) 7-02, International Building Code (IBC)-03, and National Fire Protection Association
(NFPA) 5000, are likely to be adopted as a design standard by local code agencies.
There now exists the unprecedented possibility of a single standard becoming a basis for
earthquake-resistant design virtually in the entire United States, as well as in other nations
that base their codes on U.S. practices. By incorporating these and the latest provisions
of American Concrete Institute (ACI) 318-02, American Institute of Steel Construction
(AISC) 341-02, and Federal Emergency Management Agency (FEMA) 356 and 350 series,
this book equips designers with up-to-date information to execute safe designs, in accordance
with the latest regulations.
Chapter 1 presents methods of determining design wind loads using the provisions
of ASCE 7-02, National Building Code of Canada (NBCC) 1995, and 1997 Uniform
Building Code (UBC). Wind-tunnel procedures are discussed, including analytical methods
for determining along-wind and across-wind response.
Chapter 2 discusses the seismic design of buildings, emphasizing their behavior
under large inelastic cyclic deformations. Design provisions of ASCE 7-02 (IBC-03, NFPA
5000) and UBC-97 that call for detailing requirements to assure seismic performance
beyond the elastic range are discussed using static, dynamic, and time-history procedures.
The foregone design approach—in which the magnitude of seismic force and level of
detailing were strictly a function of the structure’s location—is compared with the most
recent provisions, in which these are not only a function of the structure’s location, but
also of its use and occupancy, and the type of soil it rests upon. This comparison will be
particularly useful for engineers practicing in many seismically low- and moderate-risk
areas of the United States, who previously did not have to deal with seismic design and
detailing, but are now obligated to do so. Also explored are the seismic design of structural
elements, nonstructural components, and equipment. The chapter concludes with a review
of structural dynamic theory.
Content :
- Wind Loads
- Seismic Design
- Steel Buildings
- Concrete Buildings
- Composite Buildings
- Seismic Rehabilitation of Existing Buildings
- Gravity Systems
- Special Topics
Download WIND and EARTHQUAKE RESISTANT BUILDINGS STRUCTURAL ANALYSIS AND DESIGN free PDF
EmoticonEmoticon