## Staircases Structural Analysis and Design

M.Y.H. Bangash

Preference :

Staircases is divided into five chapters: Specifications and basic data on staircases; Structural analysis of staircases – Classical methods; Structural analysis of staircases – Modern methods; Staircases and their analysis – A comparative study; Design analysis and structural detailing. Charts and graphs are included and numerous design examples are given of freestanding and other geometric staircases and of their elements and components. These examples are related to the case studies which were based on staircases that have already been constructed. All examples are checked using various Eurocodes.

The book includes bibliographical references and is supported by two appendices, which will be of particular interest to those practising engineers who wish to make a comparative study of the different practices and code requirements used by various countries; detailed drawings are included from the USA, Britain, Europe and Asia. Staircases will serve as a useful text for teachers preparing design syllabi for undergraduate and post graduate courses. Each major section contains a full explanation which allows the book to be used by students and practising engineers, particularly those facing the formidable task of having to design/ detail complicated staircases with unusual boundary conditions. Contractors will also find this book useful in the preparation of construction drawings and manufacturers will be interested in the guidance given in the text.

Content :
• Specification and basic data on staircases
• Structural analysis of staircases classical methods
• Structural analysis of staircases modern methods
• Staircases and their analysis a comparative study
• Design analysis and structural detailing

## Structural Analysis Fourth Edition, SI

Preference :

Structural analysis is the prediction of the performance of a given structure under prescribed loads and/or other external e¤ects, such as support movements and temperature changes. The performance characteristics commonly of interest in the design of structures are (1) stresses or stress resultants, such as axial forces, shear forces, and bending moments; (2) deflections; and (3) support reactions. Thus, the analysis of a structure usually involves the determination of these quantities as caused by a given loading condition. The objective of this text is to present the methods for the analysis of structures in static equilibrium. This chapter provides a general introduction to the subject of structural analysis. We first give a brief historical background, including the names of people whose work is important in the field. Then we discuss the role of structural analysis in structural engineering projects. We describe the five common types of structures: tension and compression structures, trusses, and shear and bending structures. Finally, we consider the development of the simplified models of real structures for the purpose of analysis.

Since the dawn of history, structural engineering has been an essential part of human endeavor. However, it was not until about the middle of the seventeenth century that engineers began applying the knowledge of mechanics (mathematics and science) in designing structures. Earlier engineering structures were designed by trial and error and by using rules of thumb based on past experience. The fact that some of the magnificent structures from earlier eras, such as Egyptian pyramids (about 3000 b.c.), Greek temples (500–200 b.c.), Roman coliseums and aqueducts (200 b.c.–a.d. 200), and Gothic cathedrals (a.d. 1000–1500), still stand today is a testimonial to the ingenuity of their builders

Content :
• Introduction to Structural Analysis
• Equilibrium and Support Reactions
• Plane and Space Trusses
• Beams and Frames: Shear and Bending Moment
• Deflections of Beams: Geometric Methods
• Deflections of Trusses, Beams, and Frames: Work–Energy Methods
• Influence Lines
• Slope-Deflection Method
• Moment-Distribution Method
• Introduction to Matrix Structural Analysis

## Concrete Folded Plate Roofs

C B Wilby

Preference :

Folded plates have been used on various buildings, for instance storage buildings, swimming
pools, gymnasia, offices, centres, entrances to buildings and tunnels - for examples see Plates
1-18. Sometimes industrialists like to have the facility to hang unpredicted miscellaneous light
loads from anywhere under a roof and regard the structural steelwork as inherently providing this
facility. Because of this requirement the author designed the shells shown in Plate 10 to have a
network of numerous cadmium-plated steel bolts placed through holes in the shells and through
steel anchorage plates of 152 mm (6 in) square on the top surface of the shells. Each bolt protruded
out of the soffit of the shell so that just about anything could be screwed on to it at some
future date. The nuts and plates were covered with a 50 mm (2 in) layer of vermiculite insulation
on the top of the shell, waterproofed with three layers of built-up roofing felt. This facility can
similarly be applied to the plates of folded plate roofs.
Because they are of concrete, such roofs have inherent resistance to fire, deterioration and to
atmospheric corrosion. They allow large spans to be achieved in structural concrete. This allows
flexibility of planning and mobility beneath. Where ground conditions require expensive piled
foundations the reduced number of supporting columns can be an economic advantage. For large
spans in structural concrete folded plates compete with barrel vault roofs. The plates are required
to be thicker than the shells, and there are more firms who will tackle constructing them without
excessive prices, increasing competition and sometimes making the cost more competitive than
for cylindrical shells.

Content :
• Practicalities
• Analysis used for the design tables
• Factors used in the design tables
• Construction
• Appendices: Design tables for concrete folded plate roofs

## Managing the Building Design Process

Gavin Tunstall

Preference :

There can be little doubt that towards the latter part of the twentieth century, the creation of
many new buildings in the UK had become an excessively confrontational process, encouraging
clients, designers and builders to seek to gain advantages from one another rather than to
work constructively together. Strict adherence to ‘professional’ roles and an unwillingness to
step over historically defined boundaries discouraged co-operation and collaboration.
Blinkered by contracts, time scales and costs, the process often appeared to be cramped in an
over-demanding, claims-conscious environment, fixated by narrow aims and responsibilities,
seemingly unable or unwilling to reflect a genuine concern with quality or customer care. The
Latham and Egan Reports, published in the 1990s described this situation as wasteful and very
significantly, that it was contributing to a diminution in the quality of both design and construction.
The reports laid the foundations for substantial on-going changes in practice and guidance
developed during the past 10 years.

The process of designing and constructing new buildings is a complex activity reflecting the
skills, perceptions and expectations of many individuals, who must attempt to respond to technical
and philosophical challenges, resolve debates and deal with the inevitable conflicts associated
with working together. The associated personnel difficulties and contractual obligations
cannot be dismissed lightly, but in an ideal scenario, everyone should be capable of appreciating
how and why decisions are taken so that there is a better chance of achieving the best possible
results under the prevailing circumstances. Understanding the process of building design
in terms of what should be done rather than who should do it helps to minimise the negative
restraints of professional boundaries. This book is based on my experience as an architect, but
I use the term building designer to describe the process of design and construction of an imaginary
new building offering a broad stage-by-stage explanation of the way in which ideas can
become reality. Although reference to some technical issues is inevitably based on current UK
practice, for the most part my intension is to discuss general principles, which I believe to be
universally applicable.

Content :
• Design and the designers
• Communication
• Permissions and approvals
• Inception
• Design planning
• The design brief
• The Design: Function, Part 1 How buildings are used
• The Design: Function, Part 2 Design and construction constraints
• The design: aesthetics
• Construction information
• Construction supervision

## Design of Structural Steelwork Second Edition

Preference :

Instruction in structural design has always been considered an essential part of the training of a student engineer, though the difficulties of teaching the subject effectively have not always been completely appreciated. An ideal course should combine theoretical instruction and practical application; limitations of time, space and money generally restrict the latter aspect to calculation and drawing with perhaps the construction and testing of models. But much can be done with pencil and paper to inculcate a sound approach to the design of structures, provided the student is made aware of the fundamentals of design method and the specific problems associated with the various structural materials. The aim of this publication is to present the essential design aspects of one structural material—steel. The book is of an entirely introductory nature, demanding no prior knowledge of the subject, but readers are assumed to have followed (or be following) courses in structural analysis and mechanics of materials in sufficient depth to give them a confident grasp of elementary structural and stress analysis techniques. Although it has been written primarily with undergraduates in mind the book will be of use to young graduates who may be coming across the subject for the first time. For this reason, the example calculations conform as far as possible to practical requirements.

The first chapter commences with a brief review of the historical development of the science of iron and steel making and the use of these two materials in structures, followed by a discussion of the important properties of structural steel, and the types of steel products available for structural use. Design philosophy and stability, outlined in Chapter 2, are followed by a detailed chapter on that most important structural element, the beam. After consideration of local and overall instability the chapter goes on to describe the design of a number of different beam types; rolled sections, compound beams, welded plate girders, gantry girders and composite beams. Chapter 4 is devoted to elements loaded in tension or compression, with or without bending, considering rolled and built-up members, concrete encasement and concrete filling, and the special problems of angle members. Connections are the subject of Chapter 5. Detailed treatment of the fundamentals of connection design is given, with emphasis on highway

Content :
• Iron and steel
• Design and stability
• Beams