Wind Analysis for Shade Open Structure Based on ASCE 7-16

Wind Analysis for Shade Open Structure Based on ASCE 7-16



In order for a structure to be sound and secure, the foundation, roof, and walls must be strong and wind-resistant. When building a structure it is important to calculate wind load to ensure that the structure can withstand high winds, especially if the building is located in an area known for inclement weather. The main wind force resisting system of a building is a vital component. While wind load calculations can be difficult to figure out because the wind is unpredictable, some standard calculations can give you a good idea of what a building can withstand. Wind loading analysis is an essential part of the building process. If wind loading analysis is not done correctly the resulting effects could include collapsed windows and doors, ripped off roofing, and more. Contact Buildings Guide for quotes on safe and durable prefabricated steel buildings.



LINK

Fundamental Structural Analysis

Fundamental Structural Analysis 

w. J. Spencer 

Preference :

Significant changes have occurred in the approach to structural analysis over the last twenty years. These changes have been brought about by a more general understanding of the nature of the problem and the development of the digital computer. Almost all s~ructural engineering offices throughout the world would now have access to some form of digital computer, ranging from hand-held programmable calculators through to the largest machines available. Powerful microcomputers are also widely available and many engineers and students have personal computers as a general aid to their work. Problems in structural analysis have now been formulated in such a way that the solution is available through the use of the computer, largely by what is known as matrix methods of structural analysis. It is interesting to note that such methods do not put forward new theories in structural analysis, rather they are a restatement of classical theory in a manner that can be directly related to the computer. This book begins with the premise that most structural analysis will be done on a computer. This is not to say that a fundamental understanding of structural behaviour is not presented or that only computer-based techniques are given. Indeed, the reverse is true. Understanding structural behaviour is an underlying theme and many solution techniques suitable for hand computation, such as moment distribution, are retained. The most widely used method of computer-based structural analysis is the matrix stiffness method. For this reason, all of the fundamental concepts of structures and structural behaviour are presented against the background of the matrix stiffness method. The result is that the student is naturally introduced to the use of the computer in structural analysis, and neither matrix methods nor the computer are treated as an addendum.

Download Fundamental Structural Analysis free PDF


Content :
  • Introduction to Structural Engineering 
  • Equilibrium Analysis and Determinacy of Structures 
  • Basic Concepts of the Stiffness Method 
  • The Matrix Stiffness Method-Part 1: Beams and Rectangular Frames 
  • The Moment Distribution Method 
  • The Matrix Stiffness Method-Part 2: Coordinate Transformation 
  • The Principle of Virtual Work 
  • The Flexibility Method of Analysis 
  • The Approximate Analysis of Structures
  • Application of Computer Programs to Structural Analysis


Download Fundamental Structural Analysis free PDF

LINK

Water Retaining Structures Analysis and Design

Water Retaining Structures Analysis and Design



Estimating labour requirements is one of the most important parts of estimating and costing the cost of labour. It is often more than half the cost of a job. An error in this area can be very costly to the workplace.
Labour costs depend on the time it will take to manufacture an item. To work this out, it helps to break the job down into the different steps required and then estimate the time it would take someone to complete each step.



LINK

HYDRAULICS IN CIVIL AND ENVIRONMENTAL ENGINEERING

HYDRAULICS IN CIVIL AND ENVIRONMENTAL ENGINEERING

Andrew Chadwick, John Morfett

Preference :

The aim of the fifth edition of Hydraulics in Civil and Environmental Engineering remains to be
to provide comprehensive coverage of civil engineering hydraulics in all its aspects and to provide
an introduction to the principles of environmentally sound hydraulic engineering practice.
To those who would be reading this book for the first time, we hope you enjoy it. You should
find sufficient material to cover most first degree courses and useful information for a higher
degree and for professional practice. The references and further reading lists are comprehensive
and point the way to further study.
The fifth edition has been extensively reviewed by a panel of ten experts drawn from across
the world. It contains much of the material from the previous editions and includes substantive
revisions of the chapters on hydraulic machines, flood hydrology and computational modeling.
New material has also been added to the chapters on hydrostatics, principles of fluid flow, the behavior of real fluids, open channel flow, pressure surge in pipelines, wave theory, sediment
transport, river engineering, and coastal engineering. The latest recommendations regarding
climate change predictions, impacts and adaptation measures have also been included. The
chapter on water quality modeling has been removed to contain the size of the book. References
have been updated throughout.

Hydraulics is a very ancient science. The Egyptians and Babylonians constructed canals, both
for irrigation and for defensive purposes. No attempts were made at that time to understand
the laws of fluid motion. The first notable attempts to rationalize the nature of pressure and
flow patterns were undertaken by the Greeks. The laws of hydrostatics and buoyancy were
enunciated; Ctesibius and Hero designed hydraulic equipment such as the piston pump and
water clock and, of course, there was the Archimedes screw pump. The Romans appear, like the
Egyptians, to have been more interested in the practical and constructional aspects of hydraulics
than in theorizing. Thus, development continued slowly until the time of the Renaissance,
when men such as Leonardo Da Vinci began to publish the results of their observations. Ideas
which emerged then, respecting conservation of mass (continuity of flow), frictional resistance
and the velocity of surface waves, are still in use, though sometimes in a more refined form.
The Italian School became famous for their work. Torricelli et al. observed the behavior of
water jets. They compared the path traced by a free jet with projectile theory and related the
jet velocity to the square root of the pressure generating the flow. Guglielmini et al. published
the results of observations on river flows. The Italians were hydraulicians in the original sense
of the word, i.e., they were primarily empiricists. Up to this point, mathematics had played
no significant part in this sort of scientific work. Indeed, at that time mathematics was largely
confined to the principles of geometry, but this was about to change.



Content :
  • 1 Hydrostatics
  • 2 Principles of Fluid Flow
  • 3 Behaviour of Real Fluids
  • 4 Flow in Pipes and Closed Conduits
  • 5 Open Channel Flow
  • 6 Pressure Surge in Pipelines
  • 7 Hydraulic Machines
  • 12 Pipeline Systems
  • 13 Hydraulic Structures
  • 14 Computational Hydraulics
  • 15 River and Canal Engineering
  • 16 Coastal Engineering
  • 17 Postscript


Download Hydraulics In Civil And Environmental Engineering free PDF

LINK

Life Cycle Costing for the Analysis, Management and Maintenance of Civil Engineering Infrastructure

Life Cycle Costing for the Analysis, Management and Maintenance of Civil Engineering Infrastructure

John W. Bull

Preference :

A number of studies have considered life-cycle environmental impacts from the
housing sector (e.g. Adalberth, 1997; Adalberth et al., 2001; Peuportier, 2001; Asif
et al., 2007; Hacker et al., 2008; Hammond and Jones, 2008; Bribián et al., 2009; Oritz
et al, 2009; Mohan and Powell, 2010; Cuéllar-Franca and Azapagic, 2012) but the
life cycle costs have seldom been addressed. And yet, economic aspects such as
housing costs and affordability are important for the sustainable development of the
residential construction sector.
The housing sector is very important for the UK economy as it directly affects
the economic growth (HC, 2008). For example, in 2010, the construction industry
contributed 8.5% of the UK’s total gross domestic product (GDP) of £1.45 trillion,
to which the residential sector contributed 40% (UKCG, 2009). After Denmark and
Greece, the UK has the highest housing prices across the European Union with people
spending around 40% of their income on housing costs such as mortgage payments
and energy bills (Eurostat, 2012). The latter is the cause of fuel poverty of around six
million households owing to the rising energy prices (DECC, 2009; Bolton, 2010).
In recent years, many people have been unable to purchase a home because of
changes in the availability and types of financial and mortgage products (Sergeant,
2011; DCLG, 2012; RICS, 2012). This situation has created an unstable housing market,
which has led to a fall in house prices and dragged the UK economy further
into recession. For example, the average house price of around £190,000 in 2008 fell
to £160,000 in 2011 (HPUK, 2012). Home ownership is also declining and in 2011
it dropped to 66% from 70.9% in 2003; so the proportion of households that own
their own homes has fallen back to where it was in 1989 (BBC, 2012). This trend
is expected to continue over the next 10 years (Sergeant, 2011). Such a situation is
affecting particularly young people – only 10% of all owner-occupiers are under 35
years of age (BBC, 2012) while 33% of first-time buyers are over 35



Content :
  • Life cycle cost analysis of the UK housing stock
  • Case study: Life cycle analysis of a community hydroelectric power system
  • Selection indicators for stabilization of pavement systems
  • Pavement type selection for highway rehabilitation based on a life-cycle cost analysis
  • Life cycle management framework for highway bridges
  • Life cycle analysis of highway composite bridges
  • Life cycle cost analysis for corrosion protective coatings


Download Life Cycle Costing for the Analysis, Management and Maintenance free PDF

LINK

Introduction to Civil Engineering Systems

Introduction to Civil Engineering Systems

Samuel Labi

Preference :

The civil engineering discipline involves the development of structural, hydraulic, geotechnical,
construction, environmental, transportation, architectural, and other civil systems that address societies’
infrastructure needs. The planning and design of these systems are well covered in traditional
courses and texts at most universities. In recent years, however, universities have increasingly
sought to infuse a “systems” perspective to their traditional civil engineering curricula. This development
arose out of the recognition that the developers of civil engineering systems need a solid set
of skills in other disciplines. These skills are needed to equip them further for their traditional tasks
at the design and construction phases and also to burnish their analytical skills for other less-obvious
or emerging tasks at all phases of system development.
The development of civil engineering systems over the centuries and millennia has been characterized
by continual improvements that were achieved mostly through series of trial-and-error as
systems were constructed and reconstructed by learning from past mistakes. At the current time,
the use of trial-and-error methods on real-life systems is infeasible because it may take not only
several decades but also involve excessive costs in resources and, possibly, human lives before the
best system can be finally realized. Also in the past, systems have been developed in ways that were
not always effective or cost-effective. For these and other reasons, the current era, which has inherited
the civil engineering systems built decades ago, poses a unique set of challenges for today’s
civil engineers. A large number of these systems, dams, bridges, roads, ports, and so on are functionally
obsolescent or are approaching the end of their design lives and are in need of expansion,
rehabilitation, or replacement. The issue of inadequate or aging civil infrastructure has deservedly
gained national attention due to a series of publicized engineering system failures in the United
States, such as the New Orleans levees, the Minnesota and Seattle interstate highway bridges, and
the New York and Dallas sewers, and in other countries. The current problem of aging infrastructure
is further exacerbated by increased demand and loading fueled by population growth, rising
user expectations of system performance, increased desire for stakeholder participation in decisionmaking
processes, terrorism threats, the looming specter of tort liability, and above all, inadequate
funding for sustained preservation and renewal of these systems.



Content :
  • Introduction
  • Fundamental Concepts in Systems Engineering
  • Tools Needed to Carry Out the Tasks
  • The Needs Assessment Phase
  • Systems Planning
  • System Design
  • Systems Construction
  • System Operations
  • System Monitoring
  • System Preservation (Maintenance and Rehabilitation
  • System End of Life
  • Other Topics Related to Civil Systems Development


Download Introduction to Civil Engineering Systems free PDF

LINK

Fluid Mechanics for Civil and Environmental Engineers

Fluid Mechanics for Civil and Environmental Engineers

Ahlam I. Shalaby

Preference :

The study of fluid mechanics is important in numerous fields of engineering, including civil,
environmental, agricultural, irrigation, mechanical, aerospace, nuclear, chemical, petroleum,
biomedical, fire protection, and automotive engineering. The fundamental principles
of fluid mechanics include three basic units of study: fluid statics, fluid kinematics, and fluid
dynamics (Section 1.2). The physical properties/characteristics of a fluid system, along with
the fluid kinematics and fluid dynamics, will determine the type of fluid flow (Section 1.3).
The physical quantities of fluid flow (geometrics, kinematics, and dynamics) and the physical
properties/characteristics of fluids (mass density, specific gravity, specific weight, viscosity,
surface tension, vapor pressure, and bulk modulus) are expressed using four
primary dimensions (force or mass, length, time, and temperature) and a specific system
of units (metric or English) (Section 1.4). Most fluid properties vary with temperature and
pressure, while the acceleration due to gravity varies with altitude and thus atmospheric
pressure. As such, it is important to distinguish between two types of pressure scales
(Section 1.5), define the conditions of standard atmosphere (Section 1.6), and define the standard
reference for standard atmospheric pressure (Section 1.7). Furthermore, it is important
to highlight Newton’s second law of motion in the definition of the acceleration due to gravity
(Section 1.8) and to note that the dynamic forces acting on a fluid element include those
due to gravity, pressure, viscosity, elasticity, surface tension, and inertia (Section 1.9). And,
finally, the physical properties of fluids are presented in Section 1.10.

The fundamental principles of fluid mechanics can be subdivided into three units of study:
fluid statics, fluid kinematics, and fluid dynamics. Fluid statics deals with fluids at rest,
while fluid kinematics and fluid dynamics deal with fluids in motion. Fluid statics is based
upon the principles of hydrostatics, which yield the hydrostatic pressure equation. Fluid
kinematics is based upon the principle of conservation of mass, which yields the continuity
equation. And fluid dynamics is based upon the principle of conservation of momentum
(Newton’s second law of motion), which yields the equations of motion, known as the
energy equation and the momentum equation. The energy equation may alternatively be
based on the principle of conservation of energy (the first law of thermodynamics). Furthermore,
fluid dynamics also includes the topic of dimensional analysis, which yields the resistance equations.



Content :
  • Introduction
  • Fluid Statics
  • Continuity Equation
  • Energy Equation
  • Momentum Equation
  • Flow Resistance Equations
  • Dimensional Analysis
  • Pipe Flow
  • External Flow
  • Dynamic Similitude and Modeling


Download Fluid Mechanics for Civil and Environmental Engineers free PDF

LINK