Water Retaining Structures Analysis and Design

Water Retaining Structures Analysis and Design



Estimating labour requirements is one of the most important parts of estimating and costing the cost of labour. It is often more than half the cost of a job. An error in this area can be very costly to the workplace.
Labour costs depend on the time it will take to manufacture an item. To work this out, it helps to break the job down into the different steps required and then estimate the time it would take someone to complete each step.



LINK

HYDRAULICS IN CIVIL AND ENVIRONMENTAL ENGINEERING

HYDRAULICS IN CIVIL AND ENVIRONMENTAL ENGINEERING

Andrew Chadwick, John Morfett

Preference :

The aim of the fifth edition of Hydraulics in Civil and Environmental Engineering remains to be
to provide comprehensive coverage of civil engineering hydraulics in all its aspects and to provide
an introduction to the principles of environmentally sound hydraulic engineering practice.
To those who would be reading this book for the first time, we hope you enjoy it. You should
find sufficient material to cover most first degree courses and useful information for a higher
degree and for professional practice. The references and further reading lists are comprehensive
and point the way to further study.
The fifth edition has been extensively reviewed by a panel of ten experts drawn from across
the world. It contains much of the material from the previous editions and includes substantive
revisions of the chapters on hydraulic machines, flood hydrology and computational modeling.
New material has also been added to the chapters on hydrostatics, principles of fluid flow, the behavior of real fluids, open channel flow, pressure surge in pipelines, wave theory, sediment
transport, river engineering, and coastal engineering. The latest recommendations regarding
climate change predictions, impacts and adaptation measures have also been included. The
chapter on water quality modeling has been removed to contain the size of the book. References
have been updated throughout.

Hydraulics is a very ancient science. The Egyptians and Babylonians constructed canals, both
for irrigation and for defensive purposes. No attempts were made at that time to understand
the laws of fluid motion. The first notable attempts to rationalize the nature of pressure and
flow patterns were undertaken by the Greeks. The laws of hydrostatics and buoyancy were
enunciated; Ctesibius and Hero designed hydraulic equipment such as the piston pump and
water clock and, of course, there was the Archimedes screw pump. The Romans appear, like the
Egyptians, to have been more interested in the practical and constructional aspects of hydraulics
than in theorizing. Thus, development continued slowly until the time of the Renaissance,
when men such as Leonardo Da Vinci began to publish the results of their observations. Ideas
which emerged then, respecting conservation of mass (continuity of flow), frictional resistance
and the velocity of surface waves, are still in use, though sometimes in a more refined form.
The Italian School became famous for their work. Torricelli et al. observed the behavior of
water jets. They compared the path traced by a free jet with projectile theory and related the
jet velocity to the square root of the pressure generating the flow. Guglielmini et al. published
the results of observations on river flows. The Italians were hydraulicians in the original sense
of the word, i.e., they were primarily empiricists. Up to this point, mathematics had played
no significant part in this sort of scientific work. Indeed, at that time mathematics was largely
confined to the principles of geometry, but this was about to change.



Content :
  • 1 Hydrostatics
  • 2 Principles of Fluid Flow
  • 3 Behaviour of Real Fluids
  • 4 Flow in Pipes and Closed Conduits
  • 5 Open Channel Flow
  • 6 Pressure Surge in Pipelines
  • 7 Hydraulic Machines
  • 12 Pipeline Systems
  • 13 Hydraulic Structures
  • 14 Computational Hydraulics
  • 15 River and Canal Engineering
  • 16 Coastal Engineering
  • 17 Postscript


Download Hydraulics In Civil And Environmental Engineering free PDF

LINK

Life Cycle Costing for the Analysis, Management and Maintenance of Civil Engineering Infrastructure

Life Cycle Costing for the Analysis, Management and Maintenance of Civil Engineering Infrastructure

John W. Bull

Preference :

A number of studies have considered life-cycle environmental impacts from the
housing sector (e.g. Adalberth, 1997; Adalberth et al., 2001; Peuportier, 2001; Asif
et al., 2007; Hacker et al., 2008; Hammond and Jones, 2008; Bribián et al., 2009; Oritz
et al, 2009; Mohan and Powell, 2010; Cuéllar-Franca and Azapagic, 2012) but the
life cycle costs have seldom been addressed. And yet, economic aspects such as
housing costs and affordability are important for the sustainable development of the
residential construction sector.
The housing sector is very important for the UK economy as it directly affects
the economic growth (HC, 2008). For example, in 2010, the construction industry
contributed 8.5% of the UK’s total gross domestic product (GDP) of £1.45 trillion,
to which the residential sector contributed 40% (UKCG, 2009). After Denmark and
Greece, the UK has the highest housing prices across the European Union with people
spending around 40% of their income on housing costs such as mortgage payments
and energy bills (Eurostat, 2012). The latter is the cause of fuel poverty of around six
million households owing to the rising energy prices (DECC, 2009; Bolton, 2010).
In recent years, many people have been unable to purchase a home because of
changes in the availability and types of financial and mortgage products (Sergeant,
2011; DCLG, 2012; RICS, 2012). This situation has created an unstable housing market,
which has led to a fall in house prices and dragged the UK economy further
into recession. For example, the average house price of around £190,000 in 2008 fell
to £160,000 in 2011 (HPUK, 2012). Home ownership is also declining and in 2011
it dropped to 66% from 70.9% in 2003; so the proportion of households that own
their own homes has fallen back to where it was in 1989 (BBC, 2012). This trend
is expected to continue over the next 10 years (Sergeant, 2011). Such a situation is
affecting particularly young people – only 10% of all owner-occupiers are under 35
years of age (BBC, 2012) while 33% of first-time buyers are over 35



Content :
  • Life cycle cost analysis of the UK housing stock
  • Case study: Life cycle analysis of a community hydroelectric power system
  • Selection indicators for stabilization of pavement systems
  • Pavement type selection for highway rehabilitation based on a life-cycle cost analysis
  • Life cycle management framework for highway bridges
  • Life cycle analysis of highway composite bridges
  • Life cycle cost analysis for corrosion protective coatings


Download Life Cycle Costing for the Analysis, Management and Maintenance free PDF

LINK

Introduction to Civil Engineering Systems

Introduction to Civil Engineering Systems

Samuel Labi

Preference :

The civil engineering discipline involves the development of structural, hydraulic, geotechnical,
construction, environmental, transportation, architectural, and other civil systems that address societies’
infrastructure needs. The planning and design of these systems are well covered in traditional
courses and texts at most universities. In recent years, however, universities have increasingly
sought to infuse a “systems” perspective to their traditional civil engineering curricula. This development
arose out of the recognition that the developers of civil engineering systems need a solid set
of skills in other disciplines. These skills are needed to equip them further for their traditional tasks
at the design and construction phases and also to burnish their analytical skills for other less-obvious
or emerging tasks at all phases of system development.
The development of civil engineering systems over the centuries and millennia has been characterized
by continual improvements that were achieved mostly through series of trial-and-error as
systems were constructed and reconstructed by learning from past mistakes. At the current time,
the use of trial-and-error methods on real-life systems is infeasible because it may take not only
several decades but also involve excessive costs in resources and, possibly, human lives before the
best system can be finally realized. Also in the past, systems have been developed in ways that were
not always effective or cost-effective. For these and other reasons, the current era, which has inherited
the civil engineering systems built decades ago, poses a unique set of challenges for today’s
civil engineers. A large number of these systems, dams, bridges, roads, ports, and so on are functionally
obsolescent or are approaching the end of their design lives and are in need of expansion,
rehabilitation, or replacement. The issue of inadequate or aging civil infrastructure has deservedly
gained national attention due to a series of publicized engineering system failures in the United
States, such as the New Orleans levees, the Minnesota and Seattle interstate highway bridges, and
the New York and Dallas sewers, and in other countries. The current problem of aging infrastructure
is further exacerbated by increased demand and loading fueled by population growth, rising
user expectations of system performance, increased desire for stakeholder participation in decisionmaking
processes, terrorism threats, the looming specter of tort liability, and above all, inadequate
funding for sustained preservation and renewal of these systems.



Content :
  • Introduction
  • Fundamental Concepts in Systems Engineering
  • Tools Needed to Carry Out the Tasks
  • The Needs Assessment Phase
  • Systems Planning
  • System Design
  • Systems Construction
  • System Operations
  • System Monitoring
  • System Preservation (Maintenance and Rehabilitation
  • System End of Life
  • Other Topics Related to Civil Systems Development


Download Introduction to Civil Engineering Systems free PDF

LINK

Fluid Mechanics for Civil and Environmental Engineers

Fluid Mechanics for Civil and Environmental Engineers

Ahlam I. Shalaby

Preference :

The study of fluid mechanics is important in numerous fields of engineering, including civil,
environmental, agricultural, irrigation, mechanical, aerospace, nuclear, chemical, petroleum,
biomedical, fire protection, and automotive engineering. The fundamental principles
of fluid mechanics include three basic units of study: fluid statics, fluid kinematics, and fluid
dynamics (Section 1.2). The physical properties/characteristics of a fluid system, along with
the fluid kinematics and fluid dynamics, will determine the type of fluid flow (Section 1.3).
The physical quantities of fluid flow (geometrics, kinematics, and dynamics) and the physical
properties/characteristics of fluids (mass density, specific gravity, specific weight, viscosity,
surface tension, vapor pressure, and bulk modulus) are expressed using four
primary dimensions (force or mass, length, time, and temperature) and a specific system
of units (metric or English) (Section 1.4). Most fluid properties vary with temperature and
pressure, while the acceleration due to gravity varies with altitude and thus atmospheric
pressure. As such, it is important to distinguish between two types of pressure scales
(Section 1.5), define the conditions of standard atmosphere (Section 1.6), and define the standard
reference for standard atmospheric pressure (Section 1.7). Furthermore, it is important
to highlight Newton’s second law of motion in the definition of the acceleration due to gravity
(Section 1.8) and to note that the dynamic forces acting on a fluid element include those
due to gravity, pressure, viscosity, elasticity, surface tension, and inertia (Section 1.9). And,
finally, the physical properties of fluids are presented in Section 1.10.

The fundamental principles of fluid mechanics can be subdivided into three units of study:
fluid statics, fluid kinematics, and fluid dynamics. Fluid statics deals with fluids at rest,
while fluid kinematics and fluid dynamics deal with fluids in motion. Fluid statics is based
upon the principles of hydrostatics, which yield the hydrostatic pressure equation. Fluid
kinematics is based upon the principle of conservation of mass, which yields the continuity
equation. And fluid dynamics is based upon the principle of conservation of momentum
(Newton’s second law of motion), which yields the equations of motion, known as the
energy equation and the momentum equation. The energy equation may alternatively be
based on the principle of conservation of energy (the first law of thermodynamics). Furthermore,
fluid dynamics also includes the topic of dimensional analysis, which yields the resistance equations.



Content :
  • Introduction
  • Fluid Statics
  • Continuity Equation
  • Energy Equation
  • Momentum Equation
  • Flow Resistance Equations
  • Dimensional Analysis
  • Pipe Flow
  • External Flow
  • Dynamic Similitude and Modeling


Download Fluid Mechanics for Civil and Environmental Engineers free PDF

LINK

Fundamentals of Construction Estimating

Fundamentals of Construction Estimating

Smid Book

Preference :

The goal of this book is to present a method of compiling consistently accurate
construction cost estimates in a minimum of time. The method can easily be
integrated with the latest technology available to obtain soaring productivity; it is a
method of estimating that offers extensive review and control capabilities because it
is consistent with the basic procedures followed by professional estimators and
quantity surveyors in the construction industry.
The method presented is intended to represent a standard or basic core that can
be adopted in the many types of construction estimating used across the wide variety
of construction work. Worked examples and explanations that are offered, however,
will come from small building projects of minimal complexity so that the reader can
concentrate on the technique involved rather than spend time unraveling detail.
The book is intended primarily for the person who is beginning to learn the
process of construction cost estimating. This person may be employed in a contractor’s
office taking on estimating responsibilities for the first time, or he or she may
be a student starting a course in estimating at college. The text will also be of interest to many supervisors, construction managers, and practicing estimators who, from
time to time, may need to refer to an estimating standard or simply investigate how
other estimators approach this subject.

Estimates serve a number of different functions in the construction process. In the early stages of a construction program, the owner needs an
estimate of the probable cost of construction to assess the financial feasibility of the
project. This conceptual estimate has to be prepared from a minimum amount of
information because it is required at a time when the project is often little more than
a vague idea in the mind of the owner. There will be few if any design details at this
stage because the design process will not begin until the owner is satisfied that the
cost of proceeding with it is justified.



Content :
  • INTRODUCTION
  • THE ESTIMATING PROCESS AND PRELIMINARY PROCEDURES
  • MEASURING QUANTITIES GENERALLY
  • MEASURING SITEWORK, EXCAVATION, AND PILING
  • MEASURING CONCRETE WORK
  • MEASURING MASONRY WORK
  • MEASURING CARPENTRY AND MISCELLANEOUS ITEMS
  • PRICING GENERALLY
  • PRICING CONSTRUCTION EQUIPMENT
  • PRICING EXCAVATION AND BACKFILL
  • PRICING CONCRETE WORK
  • PRICING MASONRY, CARPENTRY, AND FINISHES WORK
  • PRICING SUBCONTRACTORS’ WORK
  • PRICING GENERAL EXPENSES
  • CLOSING THE BID
  • LIFE-CYCLE COSTING


Download Fundamentals of Construction Estimating free PDF

LINK

A Dictionary of Construction, Surveying and Civil Engineering

A Dictionary of Construction, Surveying and Civil Engineering

CHRISTOPHER GORSE

Preference :

This Dictionary aims to provide a comprehensive and up-to-date reference of construction, surveying, and civil engineering terms within one publication. The entries address the needs of those studying on built environment courses or engaged in professional practice as well as providing much useful information for those with a general interest in architecture or construction. Builders, trade suppliers, and contractors will find the dictionary a useful desktop manual that can be easily and quickly used to check unfamiliar terminology. Due to the size and nature of the industry, it is difficult for even the most knowledgeable professionals to stay abreast of emerging issues and retain an encyclopedia of construction terms at the front of their mind. In such cases, the book acts as a reminder, giving reassurance of meanings and confidence in communication. Built environment professionals, including architects, building surveyors, building services engineers, construction managers, civil engineers, electrical engineers, facilities managers, mechanical engineers, and quantity surveyors should find the Dictionary useful. It offers a quick and easy guide to terms and information that underpin the environment in which we live, both built and natural. In covering these terms, the authors have delved into the areas of building physics and science, and their application to design, structures, materials, and practices that inform construction and engineering. Issues associated with geology, geography, climate, and the natural environment within which buildings and structures are accommodated are also covered. The policy and legal frameworks that provide governance and procedure to the built environment are included, as well as the issues related to the professional organizations that hold influential positions within the industry.



The importance of the sustainability agenda and the related fields of building,
engineering, and surveying mean that more people are taking an interest in
construction and need to familiarize themselves quickly with the language and
terminology used. The dictionary offers a good point of reference for those
operating within the field and those just interested in learning more about the
built environment and engineering. As a major consumer of the world’s natural
resources, the built environment and the impact that it has on the environment
is high on the government agenda, with all policy makers ensuring that it is
given due consideration. It is expected that the book, terms, and references will
continue to grow and be in greater demand as the degree of importance associated

with the built environment increases.


Download A Dictionary of Construction, Surveying and Civil Engineering free PDF

LINK